

    
      Navigation

      
        	
          index

        	
          next |

        	Workbench 0.1 documentation 
 
      

    


    
      
          
            
  
Welcome to Workbench’s documentation!

[image: Build Status] [https://travis-ci.org/SuperCowPowers/workbench] [image: Coverage Status] [https://coveralls.io/r/SuperCowPowers/workbench] [image: Code Health] [https://landscape.io/github/SuperCowPowers/workbench/master] [image: Project Stats] [https://www.ohloh.net/p/workbench]

Please note the coverage/health (typically 95%) are super bad right now. It’s a temporary issue that we’re working on. :)

Contents:



	About Workbench

	Installing Workbench:

	Running WorkBench

	Contributions/Support/Getting Involved









          

      

      

    


    
         Copyright 2014, SuperCowPowers LLC.
      Created using Sphinx 1.3.4.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Workbench 0.1 documentation 
 
      

    


    
      
          
            
  
About Workbench


A medium-data framework for security research and development teams.

Workbench focuses on simplicity, transparency, and easy on-site
customization. As an open source python project it provides light-weight
task management, execution and pipelining for a loosely-coupled set of
python classes.




Detailed Project Description

The workbench project takes the workbench metaphore seriously. It’s a
platform that allows you to do work; it provides a flat work surface
that supports your ability to combine tools (python modules) together.
In general a workbench never constrains you (oh no! you can’t use those
3 tools together!) on the flip side it doesn’t hold your hand either.
Using the workbench software is a bit like using a Lego set, you can put
the pieces together however you want AND adding your own pieces is super
easy!.


Loosely coupled


	No inheritance relationships

	No knowledge of data structures

	Just take some input and barf some output (no format requirements)






Flat


	Workers (that’s it… everything is a worker)

	Server dynamically loads workers from a directory called ‘workers’






Robust


	Worker fails to load (that’s fine)

	Worker crashes (no sweat, that request fails but system chugs on)






Transparency


	All worker output is reflected in the data store (currently Mongo)

	Use RoboMongo (see below) to inspect exactly what workers are
outputting.






Small Granularity


	The system works by passing references from one worker to another so
there is NO benefit to large granularity workers.

	It’s super easy to have a worker that aggregates information from a
set of workers, the opposite (breaking apart a large code chunk into
smaller units) is almost never easy.

	Pull just what you want, workers and views (which are just workers)
can be selectve about exactly which fields get pulled from which
workers.











          

      

      

    


    
         Copyright 2014, SuperCowPowers LLC.
      Created using Sphinx 1.3.4.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Workbench 0.1 documentation 
 
      

    


    
      
          
            
  
Installing Workbench:


Workbench Client:

$ pip install zerorpc; echo 'Done!'








Workbench Server:

The indexers ‘Neo4j’ and ‘ElasticSearch’ are optional. We strongly
suggest you install both of them but we also appreciate that there are
cases where that’s not possible or feasible.


Mac/OSX


	brew install mongodb

	brew install yara

	brew install libmagic

	brew install bro

	Put the bro executable in your PATH (/usr/local/bin or wherever bro
is)






Ubuntu (14.04 and 12.04)


	sudo apt-get install mongodb



	sudo apt-get install python-dev



	sudo apt-get install g++



	sudo apt-get install libssl0.9.8



	Bro IDS:



	Put the bro executable in your PATH (/opt/bro/bin or wherever bro is)

In general the Bro debian package files are WAY too locked down with
dependencies on exact versions of libc6 and python2.6. We have a more
‘flexible’ version
Bro-2.2-Linux-x86_64_flex.deb [https://s3-us-west-2.amazonaws.com/workbench-data/packages/Bro-2.2-Linux-x86_64_flex.deb].


	sudo dpkg -i Bro-2.2-Linux-x86_64_flex.deb







If using the Debian package above doesn’t work out: - Check out the
Installation tutorial
here [https://www.digitalocean.com/community/articles/how-to-install-bro-ids-2-2-on-ubuntu-12-04]
- or this one
here [http://www.justbeck.com/getting-started-with-bro-ids/] - or go
to offical Bro Downloads
www.bro.org/download/ [http://www.bro.org/download]






Install Indexers


Mac/OSX


	brew install elasticsearch

	pip install -U elasticsearch

	brew install neo4j
	Note: You may need to install Java JDK 1.7 Oracle JDK 1.7
DMG [http://download.oracle.com/otn-pub/java/jdk/7u51-b13/jdk-7u51-macosx-x64.dmg]
for macs.










Ubuntu (14.04 and 12.04)


	Neo4j: See official instructions for Neo4j
here [http://www.neo4j.org/download/linux]
	Note: You may need to install Java JDK 1.7. If you have Java 1.7
installed , and error says otherwise, run update-alternatives
–config java and select Java 1.7





	ElasticSearch:
	wget
https://download.elasticsearch.org/elasticsearch/elasticsearch/elasticsearch-1.2.1.deb

	sudo dpkg -i elasticsearch-1.2.1.deb

	sudo update-rc.d elasticsearch defaults 95 10

	sudo /etc/init.d/elasticsearch start

	Any issues see
elasticsearch_webpage [http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/setup-service.html]












Pull the repository


git clone https://github.com/supercowpowers/workbench.git

Warning!: The repository contains malcious data samples, be careful,
exclude the workbench directory from AV, etc...




Install Python Modules

Note: Workbench is continuously tested with python 2.7. We’re currently
working on Python 3 support (Issue
92 [https://github.com/SuperCowPowers/workbench/issues/92]).


	cd workbench

	pip install -r requirements.txt

	Go have a large cup of coffee...




Optional Tools

Robomongo

Robomongo is a shell-centric cross-platform MongoDB management tool.
Simply, it is a handy GUI to inspect your mongodb.


	http://robomongo.org/

	download and follow install instructions

	create a new connection to localhost (default settings fine). Name it
as you wish.








Dependency Installation Errors

Python Modules

Note: If you get a bunch of clang errors about unknown arguments or
‘cannot link a simple C program’ add the following FLAGs:

```
$ export CFLAGS=-Qunused-arguments
$ export CPPFLAGS=-Qunused-arguments
```





Errors when running Tests

If when running the worker tests you get some errors like ‘MagicError:
regexec error 17, (illegal byte sequence)’ it’s an issue with libmagic
5.17, revert to libmagic 5.16. Using brew on Mac:

$ cd /usr/local
$ brew versions libmagic # Copy the line for version 5.16, then paste (for me it looked like the following line)
$ git checkout bfb6589 Library/Formula/libmagic.rb
$ brew uninstall libmagic
$ brew install libmagic








Deprecated Stuff

Scapy Install


	brew tap Homebrew/python

	brew install scapy

	brew install pypcap

	If you get error about pyrex.distutils:
	pip install pyrex (or if this doesn’t work do easy_install pyrex)

	and then retry the ‘brew install pypcap’





	Still not working try pyrex from scatch
pyrex [http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/]



(2-5-14): For scapy python binding you have to manually install the
latest release from
secdev.org [http://www.secdev.org/projects/scapy/doc/installation.html#latest-release]
and follow the instructions (like first 5 lines)


$ wget http://www.secdev.org/projects/scapy/files/scapy-latest.zip
$ unzip scapy-latest.zip
$ cd scapy-2.*
$ sudo python setup.py install




Deprecated Instructions for Ubuntu 12.04


Ubuntu (tested on 12.04)


	Mongo: Go through the steps given at MongoDB Installation
Tutorial [http://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/]

	Bro IDS: Check out the Installation tutorial
here [https://www.digitalocean.com/community/articles/how-to-install-bro-ids-2-2-on-ubuntu-12-04]

	Yara: Read the installation instructions
here [https://github.com/plusvic/yara/releases/latest]

	sudo apt-get install libmagic-dev

	sudo apt-get install libxml2-dev

	sudo apt-get install libxslt-dev

	sudo apt-get install libevent-dev











          

      

      

    


    
         Copyright 2014, SuperCowPowers LLC.
      Created using Sphinx 1.3.4.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Workbench 0.1 documentation 
 
      

    


    
      
          
            
  
Running WorkBench


Server (localhost or server machine)


$ cd workbench
$ ./workbench




Example Clients (use -s for remote server)

There are about a dozen example clients showing how to use workbench on
pcaps, PEfiles, pdfs, and log files. We even have a simple nodes.js
client (looking for node devs to pop some pull requests :).


$ cd workbench/clients
$ python simple_workbench_client.py [-s tcp://mega.server.com]




Configuration File Information

When you first run workbench it copies default.ini to config.ini within
the workbench/server directory, you can make local changes to this file
without worrying about it getting overwritten on the next ‘git pull’.
Also you can store API keys in it because it never gets pushed back to
the repository.

# Example/default configuration for the workbench server
[workbench]

# Server URI (server machine ip or name)
# Example: mybigserver or 12.34.56.789
server_uri = localhost

# DataStore URI (datastore machine ip or name)
# Example: mybigserver or 12.34.56.789
datastore_uri = localhost

# Neo4j URI (Neo4j Graph DB machine ip or name)
# Example: mybigserver or 12.34.56.789
neo4j_uri = localhost

# ElasticSearch URI (ELS machine ip or name)
# Example: mybigserver or 12.34.56.789
els_uri = localhost

# DataStore Database
# Example: customer123, ml_talk, pdf_deep
database = workbench

# Storage Limits (in MegaBytes, 0 for no limit)
worker_cap = 10
samples_cap = 200

# VT API Key
# Example: 93748163412341234v123947
vt_apikey = 123








Workbench Examples

Please note that all of these notebooks are ‘clients’ hitting the
workbench server. Making your own client is super easy! See Making a
Client


	PCAP to Graph [http://nbviewer.ipython.org/url/raw.github.com/SuperCowPowers/workbench/master/notebooks/PCAP_to_Graph.ipynb/] (A short teaser)

	Workbench Demo [http://nbviewer.ipython.org/url/raw.github.com/SuperCowPowers/workbench/master/notebooks/Workbench_Demo.ipynb/]

	Adding a new Worker [http://nbviewer.ipython.org/url/raw.github.com/SuperCowPowers/workbench/master/notebooks/Adding_Worker.ipynb/] (super hawt)

	PCAP to Dataframe [http://nbviewer.ipython.org/url/raw.github.com/SuperCowPowers/workbench/master/notebooks/PCAP_to_Dataframe.ipynb/]

	PCAP DriveBy Analysis [http://nbviewer.ipython.org/url/raw.github.com/SuperCowPowers/workbench/master/notebooks/PCAP_DriveBy.ipynb]

	Using Neo4j for PE File Sim Graph [http://nbviewer.ipython.org/url/raw.github.com/SuperCowPowers/workbench/master/notebooks/PE_SimGraph.ipynb]

	Generator Pipelines Notebook [http://nbviewer.ipython.org/url/raw.github.com/SuperCowPowers/workbench/master/notebooks/Generator_Pipelines.ipynb]

	WIP Notebooks
	Network Stream Analysis Notebook [http://nbviewer.ipython.org/url/raw.github.com/SuperCowPowers/workbench/master/notebooks/Network_Stream.ipynb]

	PE File Static Analysis Notebook [http://nbviewer.ipython.org/url/raw.github.com/SuperCowPowers/workbench/master/notebooks/PE_Static_Analysis.ipynb]








Making your own Worker

Fill in info




Making your own Client

Although the Workbench repository has dozens of clients (see
workbench/clients)there is NO official client to workbench. Clients are
examples of how YOU can just use ZeroRPC from the Python, Node.js, or
CLI interfaces. See ZeroRPC [http://zerorpc.dotcloud.com/].

import zerorpc
c = zerorpc.Client()
c.connect("tcp://127.0.0.1:4242")
with open('evil.pcap','rb') as f:
    md5 = c.store_sample('evil.pcap', f.read())
print c.work_request('pcap_meta', md5)





Output from above ‘client’:
python {'pcap_meta': {'encoding': 'binary', 'file_size': 54339570, 'file_type': 'tcpdump (little-endian) - version 2.4 (Ethernet, 65535)', 'filename': 'evil.pcap', 'import_time': '2014-02-08T22:15:50.282000Z', 'md5': 'bba97e16d7f92240196dc0caef9c457a', 'mime_type': 'application/vnd.tcpdump.pcap'}}
### Running the IPython Notebooks * brew install freetype * brew
install gfortran * pip install -r requirements_notebooks.txt * Go to
Starbucks..




Workbench Conventions

Workers should adhere to the following naming conventions (not enforced)


	If you work on a specific type of sample than start the name with
that

	Examples: pcap_bro.py, pe_features.py, log_meta.py

	A worker that is new/experimental should start with ‘x_’
(x_pcap_razor.py)

	A ‘view’(worker that handles ‘presentation’) should start with
‘view_’

	Examples: view_log_meta.py, view_pdf.py, view_pe.py








Running Tests

Unit testing and sub-pipeline tests


$ cd workbench/server/workers
$ ./runtests

Full pipeline tests (clients exercise a larger set of components)


$ cd workbench/clients
$ ./runtests




Test Coverage

If you want to run the test code coverage properly you’ll need to create
a ~/.noserc file with these options:

[nosetests]
with-coverage=1
cover-erase=1
cover-inclusive=1
cover-min-percentage=90
cover-package=.








Benign Error

We have no idea why occasionaly you see this pop up in the server
output. To our knowledge it literally has no impact on any functionality
or robustness. If you know anything about this please help us out by
opening an issue and pull request. :)


ERROR:zerorpc.channel:zerorpc.ChannelMultiplexer, unable to route event:
_zpc_more {'response_to': '67d7df3f-1f3e-45f4-b2e6-352260fa1507', 'zmqid':
['\x00\x82*\x01\xea'], 'message_id': '67d7df42-1f3e-45f4-b2e6-352260fa1507',
'v': 3} [...]


VirusTotal Warning

The vt_query.py worker uses a shared ‘low-volume’ API key provided by
SuperCowPowers LLC. When running the vt_query worker the following
warning happens quite often:

"VirusTotal Query Error, no valid response... past per min quota?"





If you’d like to use the vt_query worker on a regular basis, you’ll
have to put your own VirusTotal API key in the
workbench/server/config.ini file.









          

      

      

    


    
         Copyright 2014, SuperCowPowers LLC.
      Created using Sphinx 1.3.4.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	Workbench 0.1 documentation 
 
      

    


    
      
          
            
  
Contributions/Support/Getting Involved

Workbench is committed to providing open source security software. If
you’re a developer looking to chip-in or want to support the project
please contact us at support@supercowpowers.com or visit one of the
links below:


	Users email list:
workbench-users [https://groups.google.com/forum/#!forum/workbench-users]

	Developer email list:
workbench-devs [https://groups.google.com/forum/#!forum/workbench-devs]

	Feature requests: issue
tracker [https://github.com/SuperCowPowers/workbench/issues]

	Earn a T-Shirt!: All issues have cow points, get 100+ for T

	Buy a T-Shirt!:
SuperCowPowers [http://www.supercowpowers.com/#about]

	Donate: SuperCowPowers [http://www.supercowpowers.com/#about]




Git Development Model

We’re going to use the ‘GitHub Flow’ model.


	To work on something new, create a descriptively named branch off of
master (ie:new-oauth2-scopes)

	Commit to that branch locally and regularly push your work to the
same named branch on the server

	When you need feedback or help, or you think the branch is ready for
merging, open a pull request

	After someone else has reviewed and signed off on the feature, you
can merge it into master






Git Example

$ git checkout -b my-awesome
$ git push -u origin my-awesome
$ <code for a bit>; git push
$ <code for a bit>; git push
$ Go to github and hit 'New pull request'






Bounties (Rewards for contributing to Workbench)

Top Bounties


	Bro Scripts for OWASP Top 10 (1000 Cow Points)

	Python based SWF Decompiler/Decompression (500 Cow Points)

	Deep PDF Static Analysis (500 Cow Points)

	Worker for Cab File extraction (100 Cow Points)



FAQ about Cow Points


	Are Cow Points worth anything? : No

	Will Cow Points ever be worth anything? : Maybe

	Are Cow Points officially tracked? : Yes

	Will I receive good Karma for Cow Points? : Yes











          

      

      

    


    
         Copyright 2014, SuperCowPowers LLC.
      Created using Sphinx 1.3.4.
    

  

    
      Navigation

      
        	
          index

        	Workbench 0.1 documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2014, SuperCowPowers LLC.
      Created using Sphinx 1.3.4.
    

  _static/up.png





_static/comment-close.png





_static/file.png





search.html


    
      Navigation


      
        		
          index


        		Workbench 0.1 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2014, SuperCowPowers LLC.
      Created using Sphinx 1.3.4.
    

  

_static/ajax-loader.gif





_static/down-pressed.png





_static/down.png





_static/comment.png





_static/plus.png





_static/minus.png





_static/up-pressed.png





_static/comment-bright.png





